改進此頁

Search for a Range

Source

Given a sorted array of integers, find the starting and ending position of a given target value.

Your algorithm's runtime complexity must be in the order of O(log n).

If the target is not found in the array, return [-1, -1].

Example
Given [5, 7, 7, 8, 8, 10] and target value 8,
return [3, 4].

題解

Search for a range 的題目可以拆解為找 first & last position 的題目,即要做兩次二分。由上題二分查找可找到滿足條件的左邊界,因此只需要再將右邊界找出即可。注意到在(target == nums[mid]時賦值語句為end = mid,將其改為start = mid即可找到右邊界,解畢。

Java

/**
 * 本代碼fork自九章算法。沒有版權歡迎轉發。
 * http://www.jiuzhang.com/solutions/search-for-a-range/
 */
public class Solution {
    /**
     *@param A : an integer sorted array
     *@param target :  an integer to be inserted
     *return : a list of length 2, [index1, index2]
     */
    public ArrayList<Integer> searchRange(ArrayList<Integer> A, int target) {
        ArrayList<Integer> result = new ArrayList<Integer>();
        int start, end, mid;
        result.add(-1);
        result.add(-1);

        if (A == null || A.size() == 0) {
            return result;
        }

        // search for left bound
        start = 0;
        end = A.size() - 1;
        while (start + 1 < end) {
            mid = start + (end - start) / 2;
            if (A.get(mid) == target) {
                end = mid; // set end = mid to find the minimum mid
            } else if (A.get(mid) > target) {
                end = mid;
            } else {
                start = mid;
            }
        }
        if (A.get(start) == target) {
            result.set(0, start);
        } else if (A.get(end) == target) {
            result.set(0, end);
        } else {
            return result;
        }

        // search for right bound
        start = 0;
        end = A.size() - 1;
        while (start + 1 < end) {
            mid = start + (end - start) / 2;
            if (A.get(mid) == target) {
                start = mid; // set start = mid to find the maximum mid
            } else if (A.get(mid) > target) {
                end = mid;
            } else {
                start = mid;
            }
        }
        if (A.get(end) == target) {
            result.set(1, end);
        } else if (A.get(start) == target) {
            result.set(1, start);
        } else {
            return result;
        }

        return result;
        // write your code here
    }
}

源碼分析

  1. 首先對輸入做異常處理,數組為空或者長度為0
  2. 初始化 start, end, mid三個變量,注意mid的求值方法,可以防止兩個整型值相加時溢出
  3. 使用迭代而不是遞歸進行二分查找
  4. while終止條件應為start + 1 < end而不是start <= endstart == end時可能出現死循環
  5. 先求左邊界,迭代終止時先判斷A.get(start) == target,再判斷A.get(end) == target,因為迭代終止時target必取start或end中的一個,而end又大於start,取左邊界即為start.
  6. 再求右邊界,迭代終止時先判斷A.get(end) == target,再判斷A.get(start) == target
  7. 兩次二分查找除了終止條件不同,中間邏輯也不同,即當A.get(mid) == target如果是左邊界(first postion),中間邏輯是end = mid;若是右邊界(last position),中間邏輯是start = mid
  8. 兩次二分查找中間勿忘記重置 start, end 的變量值。

C++

class Solution {
    /** 
     *@param A : an integer sorted array
     *@param target :  an integer to be inserted
     *return : a list of length 2, [index1, index2]
     */
public:
    vector<int> searchRange(vector<int> &A, int target) {
        // good, fail are the result
        // When found, returns good, otherwise returns fail
        int N = A.size();
        vector<int> fail = {-1, -1};
        if(N == 0) 
            return fail;
        vector<int> good;

        // search for starting position
        int lo = 0, hi = N;
        while(lo < hi){
            int m = lo + (hi- lo)/2;
            if(A[m] < target)
                lo = m + 1;
            else
                hi = m;
        }

        if(A[lo] != target) 
            return fail;

        good.push_back(lo);

        // search for ending position
        lo = 0; hi = N;
        while(lo < hi){
            int m = lo + (hi - lo)/2;
            if(target < A[m])
                hi = m;
            else
                lo = m + 1;
        }
        good.push_back(lo - 1);

        return good;
    }
};

源碼分析

與前面題目類似,此題是將兩個子題組合起來,前半為找出"不小於target的最左元素",後半是"不大於target的最右元素",同樣的,使用開閉區間[lo, hi)仍然可以簡潔的處理各種邊界條件,僅須注意在解第二個子題"不大於target的最右元素"時,由於每次lo更新時都至少加1,最後會落在我們要求的位置的下一個,因此記得減1回來,若直覺難以理解,可以使用一個例子在紙上推一次每個步驟就可以體會。