Insert Node in a Binary Search Tree
Source
- lintcode: (85) Insert Node in a Binary Search Tree
Given a binary search tree  and a new tree node, insert the node into the tree. You should keep the tree still be a valid binary search tree.
Example
Given binary search tree as follow:
     2
  /    \
1        4
         /
       3
after Insert node 6, the tree should be:
     2
  /    \
1        4
         /   \
       3        6
Challenge
Do it without recursion
题解 - 递归
二叉树的题使用递归自然是最好理解的,代码也简洁易懂,缺点就是递归调用时栈空间容易溢出,故实际实现中一般使用迭代替代递归,性能更佳嘛。不过迭代的缺点就是代码量稍(很)大,逻辑也可能不是那么好懂。
既然确定使用递归,那么接下来就应该考虑具体的实现问题了。在递归的具体实现中,主要考虑如下两点:
- 基本条件/终止条件 - 返回值需斟酌。
- 递归步/条件递归 - 能使原始问题收敛。
首先来找找递归步,根据二叉查找树的定义,若插入节点的值若大于当前节点的值,则继续与当前节点的右子树的值进行比较;反之则继续与当前节点的左子树的值进行比较。题目的要求是返回最终二叉搜索树的根节点,从以上递归步的描述中似乎还难以对应到实际代码,这时不妨分析下终止条件。
有了递归步,终止条件也就水到渠成了,若当前节点为空时,即返回结果。问题是——返回什么结果?当前节点为空时,说明应该将「插入节点」插入到上一个遍历节点的左子节点或右子节点。对应到程序代码中即为root->right = node或者root->left = node. 也就是说递归步使用root->right/left = func(...)即可。
C++ Recursion
/**
 * forked from http://www.jiuzhang.com/solutions/insert-node-in-binary-search-tree/
 * Definition of TreeNode:
 * class TreeNode {
 * public:
 *     int val;
 *     TreeNode *left, *right;
 *     TreeNode(int val) {
 *         this->val = val;
 *         this->left = this->right = NULL;
 *     }
 * }
 */
class Solution {
public:
    /**
     * @param root: The root of the binary search tree.
     * @param node: insert this node into the binary search tree
     * @return: The root of the new binary search tree.
     */
    TreeNode* insertNode(TreeNode* root, TreeNode* node) {
        if (NULL == root) {
            return node;
        }
        if (node->val <= root->val) {
            root->left = insertNode(root->left, node);
        } else {
            root->right = insertNode(root->right, node);
        }
        return root;
    }
};
Java Recursion
public class Solution {
    /**
     * @param root: The root of the binary search tree.
     * @param node: insert this node into the binary search tree
     * @return: The root of the new binary search tree.
     */
    public TreeNode insertNode(TreeNode root, TreeNode node) {
        if (root == null) {
            return node;
        }
        if (root.val > node.val) {
            root.left = insertNode(root.left, node);
        } else {
            root.right = insertNode(root.right, node);
        }
        return root;
    }
}
题解 - 迭代
看过了以上递归版的题解,对于这个题来说,将递归转化为迭代的思路也是非常清晰易懂的。迭代比较当前节点的值和插入节点的值,到了二叉树的最后一层时选择是链接至左子结点还是右子节点。
C++
/**
 * Definition of TreeNode:
 * class TreeNode {
 * public:
 *     int val;
 *     TreeNode *left, *right;
 *     TreeNode(int val) {
 *         this->val = val;
 *         this->left = this->right = NULL;
 *     }
 * }
 */
class Solution {
public:
    /**
     * @param root: The root of the binary search tree.
     * @param node: insert this node into the binary search tree
     * @return: The root of the new binary search tree.
     */
    TreeNode* insertNode(TreeNode* root, TreeNode* node) {
        if (NULL == root) {
            return node;
        }
        TreeNode* tempNode = root;
        while (NULL != tempNode) {
            if (node->val <= tempNode->val) {
                if (NULL == tempNode->left) {
                    tempNode->left = node;
                    return root;
                }
                tempNode = tempNode->left;
            } else {
                if (NULL == tempNode->right) {
                    tempNode->right = node;
                    return root;
                }
                tempNode = tempNode->right;
            }
        }
        return root;
    }
};
源码分析
在NULL == tempNode->right或者NULL == tempNode->left时需要在链接完node后立即返回root,避免死循环。
Java Iterative
public class Solution {
    /**
     * @param root: The root of the binary search tree.
     * @param node: insert this node into the binary search tree
     * @return: The root of the new binary search tree.
     */
    public TreeNode insertNode(TreeNode root, TreeNode node) {
        // write your code here
        if (root == null) return node;
        if (node == null) return root;
        TreeNode rootcopy = root;
        while (root != null) {
            if (root.val <= node.val && root.right == null) {
                root.right = node;
                break;
            }
            else if (root.val > node.val && root.left == null) {
                root.left = node;
                break;
            }
            else if(root.val <= node.val) root = root.right;
            else root = root.left;
        }
        return rootcopy;
    }
}