Unique Paths II
- tags: [DP_Matrix]
Source
- lintcode: (115) Unique Paths II
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids.
How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
Note
m and n will be at most 100.
Example
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2.
题解
在上题的基础上加了obstacal这么一个限制条件,那么也就意味着凡是遇到障碍点,其路径数马上变为0,需要注意的是初始化环节和上题有较大不同。首先来看看错误的初始化实现。
C++ initialization error
class Solution {
public:
/**
* @param obstacleGrid: A list of lists of integers
* @return: An integer
*/
int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
if(obstacleGrid.empty() || obstacleGrid[0].empty()) {
return 0;
}
const int M = obstacleGrid.size();
const int N = obstacleGrid[0].size();
vector<vector<int> > ret(M, vector<int>(N, 0));
for (int i = 0; i != M; ++i) {
if (0 == obstacleGrid[i][0]) {
ret[i][0] = 1;
}
}
for (int i = 0; i != N; ++i) {
if (0 == obstacleGrid[0][i]) {
ret[0][i] = 1;
}
}
for (int i = 1; i != M; ++i) {
for (int j = 1; j != N; ++j) {
if (obstacleGrid[i][j]) {
ret[i][j] = 0;
} else {
ret[i][j] = ret[i -1][j] + ret[i][j - 1];
}
}
}
return ret[M - 1][N - 1];
}
};
源码分析
错误之处在于初始化第0行和第0列时,未考虑到若第0行/列有一个坐标出现障碍物,则当前行/列后的元素路径数均为0!
C++
class Solution {
public:
/**
* @param obstacleGrid: A list of lists of integers
* @return: An integer
*/
int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
if(obstacleGrid.empty() || obstacleGrid[0].empty()) {
return 0;
}
const int M = obstacleGrid.size();
const int N = obstacleGrid[0].size();
vector<vector<int> > ret(M, vector<int>(N, 0));
for (int i = 0; i != M; ++i) {
if (obstacleGrid[i][0]) {
break;
} else {
ret[i][0] = 1;
}
}
for (int i = 0; i != N; ++i) {
if (obstacleGrid[0][i]) {
break;
} else {
ret[0][i] = 1;
}
}
for (int i = 1; i != M; ++i) {
for (int j = 1; j != N; ++j) {
if (obstacleGrid[i][j]) {
ret[i][j] = 0;
} else {
ret[i][j] = ret[i -1][j] + ret[i][j - 1];
}
}
}
return ret[M - 1][N - 1];
}
};
源码分析
- 异常处理
- 初始化二维矩阵(全0阵),尤其注意遇到障碍物时应
break
跳出当前循环 - 递推路径数
- 返回
ret[M - 1][N - 1]