Balanced Binary Tree
Source
- leetcode: Balanced Binary Tree | LeetCode OJ
- lintcode: (93) Balanced Binary Tree
Problem
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
Example
Given binary tree A={3,9,20,#,#,15,7}
, B={3,#,20,15,7}
A) 3 B) 3
/ \ \
9 20 20
/ \ / \
15 7 15 7
The binary tree A is a height-balanced binary tree, but B is not.
题解1 - 递归
根据题意,平衡树的定义是两子树的深度差最大不超过1,显然使用递归进行分析较为方便。既然使用递归,那么接下来就需要分析递归调用的终止条件。和之前的 Maximum Depth of Binary Tree | Algorithm 类似,NULL == root
必然是其中一个终止条件,返回0
;根据题意还需的另一终止条件应为「左右子树高度差大于1」,但对应此终止条件的返回值是多少?——INT_MAX
or INT_MIN
?想想都不合适,为何不在传入参数中传入bool
指针或者bool
引用咧?并以此变量作为最终返回值,此法看似可行,先来看看鄙人最开始想到的这种方法。
C++ Recursion with extra bool variable
/**
* Definition of TreeNode:
* class TreeNode {
* public:
* int val;
* TreeNode *left, *right;
* TreeNode(int val) {
* this->val = val;
* this->left = this->right = NULL;
* }
* }
*/
class Solution {
public:
/**
* @param root: The root of binary tree.
* @return: True if this Binary tree is Balanced, or false.
*/
bool isBalanced(TreeNode *root) {
if (NULL == root) {
return true;
}
bool result = true;
maxDepth(root, result);
return result;
}
private:
int maxDepth(TreeNode *root, bool &isBalanced) {
if (NULL == root) {
return 0;
}
int leftDepth = maxDepth(root->left, isBalanced);
int rightDepth = maxDepth(root->right, isBalanced);
if (abs(leftDepth - rightDepth) > 1) {
isBalanced = false;
// speed up the recursion process
return INT_MAX;
}
return max(leftDepth, rightDepth) + 1;
}
};
源码解析
如果在某一次子树高度差大于1时,返回INT_MAX
以减少不必要的计算过程,加速整个递归调用的过程。
初看起来上述代码好像还不错的样子,但是在看了九章的实现后,瞬间觉得自己弱爆了... 首先可以确定abs(leftDepth - rightDepth) > 1
肯定是需要特殊处理的,如果返回-1
呢?咋一看似乎在下一步返回max(leftDepth, rightDepth) + 1
时会出错,再进一步想想,我们能否不让max...
这一句执行呢?如果返回了-1
,其接盘侠必然是leftDepth
或者rightDepth
中的一个,因此我们只需要在判断子树高度差大于1的同时也判断下左右子树深度是否为-1
即可都返回-1
,不得不说这种处理方法要精妙的多,赞!
C++
/**
* forked from http://www.jiuzhang.com/solutions/balanced-binary-tree/
* Definition of TreeNode:
* class TreeNode {
* public:
* int val;
* TreeNode *left, *right;
* TreeNode(int val) {
* this->val = val;
* this->left = this->right = NULL;
* }
* }
*/
class Solution {
public:
/**
* @param root: The root of binary tree.
* @return: True if this Binary tree is Balanced, or false.
*/
bool isBalanced(TreeNode *root) {
return (-1 != maxDepth(root));
}
private:
int maxDepth(TreeNode *root) {
if (NULL == root) {
return 0;
}
int leftDepth = maxDepth(root->left);
int rightDepth = maxDepth(root->right);
if (leftDepth == -1 || rightDepth == -1 || \
abs(leftDepth - rightDepth) > 1) {
return -1;
}
return max(leftDepth, rightDepth) + 1;
}
};
Java
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public boolean isBalanced(TreeNode root) {
return maxDepth(root) != -1;
}
private int maxDepth(TreeNode root) {
if (root == null) return 0;
int leftDepth = maxDepth(root.left);
int rightDepth = maxDepth(root.right);
if (leftDepth == -1 || rightDepth == -1 ||
Math.abs(leftDepth - rightDepth) > 1) {
return -1;
}
return 1 + Math.max(leftDepth, rightDepth);
}
}
源码分析
抓住两个核心:子树的高度以及高度之差,返回值应该包含这两种信息。
复杂度分析
遍历所有节点各一次,时间复杂度为 , 使用了部分辅助变量,空间复杂度 .